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Cytotoxic Lesions of the Corpus 
Callosum That Show Restricted 
Diffusion: Mechanisms, Causes, 
and Manifestations1

Cytotoxic lesions of the corpus callosum (CLOCCs) are second-
ary lesions associated with various entities. CLOCCs have been 
found in association with drug therapy, malignancy, infection, 
subarachnoid hemorrhage, metabolic disorders, trauma, and other 
entities. In all of these conditions, cell-cytokine interactions lead 
to markedly increased levels of cytokines and extracellular gluta-
mate. Ultimately, this cascade can lead to dysfunction of the cal-
losal neurons and microglia. Cytotoxic edema develops as water 
becomes trapped in these cells. On diffusion-weighted magnetic 
resonance (MR) images, CLOCCs manifest as areas of low diffu-
sion. CLOCCs lack enhancement on contrast material–enhanced 
images, tend to be midline, and are relatively symmetric. The 
involvement of the corpus callosum typically shows one of three 
patterns: (a) a small round or oval lesion located in the center of 
the splenium, (b) a lesion centered in the splenium but extending 
through the callosal fibers laterally into the adjacent white matter, 
or (c) a lesion centered posteriorly but extending into the anterior 
corpus callosum. CLOCCs are frequently but not invariably revers-
ible. Their pathologic mechanisms are discussed, the typical MR 
imaging findings are described, and typical cases of CLOCCs are 
presented. Although CLOCCs are nonspecific with regard to the 
underlying cause, additional imaging findings and the clinical find-
ings can aid in making a specific diagnosis. Radiologists should be 
familiar with the imaging appearance of CLOCCs to avoid a mis-
diagnosis of ischemia. When CLOCCs are found, the underlying 
cause of the lesion should be sought and addressed.
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After completing this journal-based SA-CME 
activity, participants will be able to:

 ! Describe the imaging appearance of 
CLOCCs.

 ! Discuss the likely mechanisms for the 
development of cytotoxic edema.

 ! List the entities associated with 
CLOCCs.

See www.rsna.org/education/search/RG.

SA-CME LEARNING OBJECTIVES

Introduction
Cytotoxic lesions of the corpus callosum (CLOCCs) are associated 
with many entities. It is important to recognize these lesions for what 
they are—secondary lesions. It is also important to be familiar with 
their known causes so that the source can be found and addressed 
and so that a misdiagnosis of ischemia can be avoided.

Cytokines, Glutamate,  
and Lesions of the Corpus Callosum

Cell-Cytokine Relationships
Complex interdependent mechanisms regulate cytokine levels and, 
ultimately, glutamate levels in the brain (1,2). With trauma, infec-
tion, and inflammation, macrophages become active and release the 
inflammatory cytokines interleukin 1 (IL-1) and IL-6, beginning the 
cascade that leads to cytokinopathy. Monocytes then activate and 
also release IL-1 and IL-6. T cells are subsequently recruited and 

An earlier incorrect version of this  
article appeared online. This article 
was corrected on February 13, 2017.
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dency for cytotoxic edema of the corpus callosum 
to develop when cytokinopathy occurs (12–14).

What to Call These Lesions
Secondary lesions of the corpus callosum have 
been called by many names, including “mild 
encephalopathy with reversible splenial lesions 
(MERS),” “reversible splenial lesion syndrome 
(RESLES),” “reversible splenial lesions” or “tran-
sient splenial lesions,” “clinically silent lesions in 
the splenium of the corpus callosum,” and “tran-
sient focal lesions in the splenium of the corpus 
callosum” (13,15–26). Much like the posterior 
reversible encephalopathy syndrome, the existing 
names for these callosal lesions are problematic 
for multiple reasons: (a) encephalopathy is not 
always mild (can be absent or severe) (24,27,28), 
(b) the lesions are not always completely revers-
ible (27,28), and (c) the lesions are not always 
strictly splenial (27,29,30). In addition, the acro-
nym MERS is easily confused with the acronym 
for Middle Eastern respiratory syndrome.

On the other hand, it is generally agreed that 
these callosal lesions with reduced diffusion (low 
apparent diffusion coefficient [ADC] value) are 
caused by cytotoxic edema (12–14,27,29,31). 
Therefore, we term these lesions cytotoxic lesions 
of the corpus callosum (CLOCCs).

Patterns of CLOCCs 
Compared with the signal intensity of the adjacent 
parenchyma, CLOCCs demonstrate increased 
signal intensity on fluid-attenuated inversion-
recovery (FLAIR) magnetic resonance (MR) 
images and show decreased signal intensity on 
T1-weighted MR images. Diffusion is reduced 
(mean ADC value, 0.31 × 10-3 mm2/sec; range, 
0.13 × 10-3 mm2/sec to 0.48 × 10-3 mm2/sec) (20). 
CLOCCs lack enhancement on contrast mate-
rial–enhanced images, tend to be midline, and 
are relatively symmetric. The involvement of the 
corpus callosum typically shows one of three pat-
terns: (a) a small round or oval lesion located in 
the center of the splenium, (b) a lesion centered 
in the splenium but extending through the callosal 
fibers laterally into the adjacent white matter, or 
(c) a lesion centered posteriorly but extending into 
the anterior portion of the corpus callosum (Fig 3).

Associated Entities
CLOCCs are associated with drug therapy, ma-
lignancy, infections, subarachnoid hemorrhage 
(SAH), metabolic abnormalities, trauma, and 
other entities (Table).

Drug-associated CLOCCs
CLOCCs were initially described in patients with 
seizures (13,32–39), and a number of cytokine 

affect the endothelial cells, making the endothe-
lial cells leaky (breaking down the blood-brain 
barrier) and stimulating them to produce tumor 
necrosis factor-D (TNF-D� (3–5). Astrocytes, in 
turn, are stimulated by IL-1 to release glutamate 
and block reuptake of glutamate, thus increas-
ing extracellular glutamate (6). Microglia, which 
are the macrophages of the central nervous 
system (CNS), subsequently become activated 
and produce more cytokines and may initiate 
demyelination (5–7). Many of these cell-cytokine 
relationships include feedback loops that are 
exponentially amplified (7). The net result of this 
cytokinopathy is massively increased amounts of 
glutamate in the extracellular space at levels 100 
times the normal level or more (Fig 1) (3,6,8).

Cytotoxic Edema
The excitotoxic action of glutamate on N-
methyl-D-aspartate receptors, D-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid 
receptors, sodium-potassium pumps, and 
aquaporins results in an influx of water into 
both astrocytes and neurons (3,8). This water is 
trapped within the cells, which results in intra-
cellular edema and reduced diffusion, a condi-
tion termed cytotoxic edema (Fig 2).

Vulnerable Region
The corpus callosum and particularly the sple-
nium are vulnerable to cytokinopathy. Compared 
with those in other brain areas, the neurons, 
astrocytes, and oligodendrocytes of the corpus cal-
losum have a higher density of receptors, including 
cytokine receptors, glutamate and other excitatory 
amino acid receptors, toxin receptors, and drug re-
ceptors (9–11). This higher density leads to a ten-

TEACHING POINTS
 ! Cytotoxic lesions of the corpus callosum (CLOCCs) are asso-

ciated with many entities. It is important to recognize these 
lesions for what they are—secondary lesions.

 ! The net result of this cytokinopathy is massively increased 
amounts of glutamate in the extracellular space at levels 100 
times the normal level or more.

 ! It is generally agreed that these callosal lesions with reduced 
diffusion (low apparent diffusion coefficient [ADC] value) are 
caused by cytotoxic edema. Therefore, we term these lesions 
cytotoxic lesions of the corpus callosum (CLOCCs).

 ! The involvement of the corpus callosum typically shows one 
of three patterns: (a) a small round or oval lesion located in 
the center of the splenium, (b) a lesion centered in the spleni-
um but extending through the callosal fibers laterally into the 
adjacent white matter, or (c) a lesion centered posteriorly but 
extending into the anterior portion of the corpus callosum.

 ! CLOCCs are associated with drug therapy, malignancy, infec-
tions, subarachnoid hemorrhage (SAH), metabolic abnormali-
ties, trauma, and other entities.
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Figure 2. Drawing shows glutamate excitotoxicity. The extracellular glutamate binds with N-methyl-D-as-
partate receptors (NMDA-R) and D-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPA-
R), allowing sodium ions (Na+) and calcium ions (Ca+) to enter cells, potassium ions (K+) to leave cells, and 
water (H2O) to enter (pink arrows) and become trapped within neurons. This process leads to cytotoxic 
edema. Because the intracellular water cannot freely move, cytotoxic edema is manifest as reduced diffu-
sion at MR imaging.

Since the discovery of the association of anti-
seizure drug therapy with CLOCCs, other types 
of drug therapy have been implicated—from 
chemotherapy to steroid therapy (23,41). In most 
instances, the findings from the clinical history 
alone are enough to allow recognition of when 
CLOCCs are drug associated, findings such as a 
history of seizures treated with antiseizure drugs 
or current chemotherapy. However, therapy with 
some drugs is associated with concurrent MR 
imaging findings that allow specific diagnosis. 
One such drug is metronidazole (42,43); in addi-
tion to the callosal lesion, accompanying lesions 
of the dentate nuclei are characteristic (Fig 5). 
Although the exact mechanism of the action of 

abnormalities have been reported in patients with 
seizures. For example, cytokine levels are differ-
ent in patients with well-controlled seizures and 
those with poorly controlled seizures (32,40). 
However, the cytotoxic edema in patients with 
seizures is likely due only in part to the effect of 
the seizures, because therapy with antiseizure 
drugs itself can cause CLOCCs, even in patients 
without a history of seizures (Fig 4) (13,36). 
Therapy with antiseizure drugs such as carba-
mazepine can influence fluid balance systems 
(arginine vasopressin) and influence proinflam-
matory and proconvulsive cytokines. CLOCCs 
often develop after withdrawal of therapy with 
antiseizure drugs.

Figure 1. Drawing shows the 
cells and cytokines that are im-
portant in the development of 
CLOCCs. Cell-cytokine interactions 
lead to massively elevated extracel-
lular glutamate levels.
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Figure 4. Drug-associated CLOCC in a 19-year-old woman with bipolar disorder treated 
with carbamazepine therapy who had no history of seizures. (a–c) Axial FLAIR MR image (a), 
diffusion-weighted MR image (b), and ADC map (c) show an ovoid focal lesion in the sple-
nium. The signal intensity of the lesion is mildly increased on a. Diffusion is reduced. Contrast 
enhancement was absent (not shown). (d) Axial diffusion-weighted MR image obtained at the 
1-month follow-up shows that the lesion had resolved completely.

Figure 3. Drawing shows the 
three patterns of CLOCCs. Left: In 
the most common pattern, a small 
round or oval lesion is located in 
the center of the splenium. Center: 
In the second pattern, a lesion ex-
tends from the splenium through 
the callosal fibers laterally. Right: In 
the third pattern, a lesion extends 
into the anterior corpus callosum.
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metronidazole is unknown, the findings from 
animal models suggest that metronidazole causes 
a Wernicke-like encephalopathy that is due to 
cytotoxic edema (43).

Malignancy-associated CLOCCs
Occasionally, CLOCCs are seen in patients 
with malignancies (Fig 6) (20,27). Although 
CLOCCs can be seen in patients with other 
malignancies (probably caused by chemother-
apy) (20,23), in those with CNS malignancies 
the CLOCCs can be found even before treat-
ment (20), likely as a result of infiltration of 
meningeal cells with malignant cells, which re-
sults in a release of cytokines into the cerebro-
spinal fluid. Usually, patients will have a known 
primary malignancy at the time of diagnosis of 
CLOCCs. However, when CLOCCs are found 
in chemotherapy-naïve cancer patients, signs 

of CNS dissemination such as leptomeningeal 
disease should be evaluated.

Infection-associated CLOCCs
Increased levels of cytokines are seen in the 
cerebrospinal fluid of patients with bacterial or 
viral meningoencephalitis (Fig 7) (2,4,6,7,44,45). 
Leukocytes produce proinflammatory cytokines 
and increase the permeability of the blood-brain 
barrier, allowing cytokines and inflammatory cells 
to enter the CNS. CNS cytokines activate glial 
cells (microglia, astrocytes, and oligodendrocytes), 
causing cytotoxic edema by way of excitotoxic 
mechanisms. Toxin-mediated immune activation 
also can cause endothelial injury and perivascular 
edema, as in patients with Staphylococcus aureus 
infection (Fig 8), Legionella infection, and hemo-
lytic uremic syndrome. In patients with other 
infections, capillary blockage can induce ischemia, 

Figure 5. Drug-associated CLOCC  
in a 39-year-old man with lower 
extremity cellulitis treated with 
metronidazole who presented 
with new onset of altered mental 
status. (a) Axial FLAIR MR image 
at the level of the basal ganglia 
shows an ovoid focal lesion in 
the left lateral splenium. (b) Axial  
diffusion-weighted MR image 
shows reduced diffusion. (c) Axial 
FLAIR MR image at the level of 
the cerebellum shows character-
istic hyperintensity of the dentate 
nuclei, without reduced diffusion 
(diffusion-weighted image not 
shown). Metronidazole therapy 
was discontinued, and the abnor-
mality had resolved on the 10-day 
follow-up images (not shown).
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Figure 6. Malignancy-associated CLOCC in a 22-year-old woman presenting with paralysis and headache, in whom leptomeningeal 
glioblastomatosis was eventually diagnosed. (a) Sagittal T2-weighted MR image of the thoracolumbar spine shows a mass in the 
cord at the T11-T12 level. (b) Axial diffusion-weighted MR image shows an ovoid splenial lesion extending mildly off midline to the 
left and shows sparing of the surrounding callosal fibers. (c) Axial contrast-enhanced T1-weighted MR image shows a lack of lesion 
enhancement but diffuse leptomeningeal enhancement. The results of histopathologic examination of the biopsy specimen disclosed 
leptomeningeal glioblastomatosis from a glioblastoma multiforme in the spinal cord.

and cytokines can induce toxic effects in the 
cerebrum (46). In patients with malarial infec-
tion, CD8 T cells cause microvascular endothelial 
damage and leakage of proinflammatory cytokines 
(TNF-D, lymphotoxin-D, interferon-J) (Fig 9) 
(44,45,47,48). Gastrointestinal infections such as 
infections with E coli, Salmonella, or rotavirus (Fig 
10) may cause CLOCCs (49). Patients with EBV 
infection can develop CLOCCs (50), especially 
when the viral infection is accompanied by phago-
cytosis of erythrocytes, leukocytes, and platelets 
within the bone marrow by macrophages, a condi-
tion known as EBV-associated hemophagocytic 
lymphohistiocytosis (Fig 11) (51). Serum cytokine 

levels are markedly elevated in patients with EBV-
associated hemophagocytic lymphohistiocytosis, 
which likely leads to the diffuse callosal involve-
ment that can be present (Fig 12).

Infection-associated CLOCCs can be diag-
nosed in patients with signs of CNS infection, 
including fevers, leukocytosis, and nuchal rigid-
ity. Patients with malarial infection will have 
a history of travel to endemic areas. Helpful 
accompanying imaging findings may include ab-
scess formation, leptomeningeal enhancement, 
or hydrocephalus; in immunocompromised 
patients with angioinvasive fungal infections 
such as aspergillosis, an abscess with weak ring 

Figure 7. Infection-associated 
CLOCC in a 22-year-old man pre-
senting with fever and headache, 
in whom mild aseptic encephalitis 
was diagnosed. (a) Axial diffusion-
weighted MR image shows a typical 
ovoid lesion in the splenium. At the 
initial imaging examination 2 days 
earlier (images not shown), a FLAIR 
MR image had demonstrated nor-
mal findings, and a punctate focus 
of reduced diffusion had been de-
picted. (b) Axial diffusion-weighted 
MR image obtained at the 2-month 
follow-up shows that the lesion was 
nearly resolved. (Reprinted, with 
permission, from reference 45.)
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Figure 8. Infection-associated CLOCC in a 1-month-old male infant presenting with lethargy and 
high fever, in whom S aureus meningitis and vasculitis were diagnosed. (a) Axial diffusion-weighted 
MR image shows bilateral subdural collections with frontal subpial cortical infarctions and a focal sple-
nial lesion. Contrast-enhanced images disclosed diffuse leptomeningeal enhancement (not shown).  
(b) High-power photomicrograph of a postmortem specimen shows perivascular inflammatory cell infiltration 
(arrows), with edema and vasculitis involving the walls of the small arteries. (Hematoxylin-eosin [H-E] stain; 
original magnification, !200.)

enhancement, microhemorrhages, or areas of 
focal ischemia may be found (46).

SAH-associated CLOCCs
CLOCCs can be seen in patients with SAH. 
These callosal cytotoxic lesions should not be 
confused with vasospasm-related infarction. 
A lack of vessel irregularity at angiography is 
helpful in making the diagnosis. The amount 
of hemorrhage may be related to the devel-
opment of CLOCCs, which is probably less 
likely to occur in patients with limited SAH, 
for example, from rupture of a middle cerebral 
artery aneurysm with the SAH limited to only 
the sylvian fissure. Development of CLOCCs 
is likely related to the irritating properties of 
blood products; in patients with SAH, mark-
edly elevated levels of cytokines (IL-1E, IL-6, 
and TNF-D) are found in the cerebrospinal 
fluid, likely causing the cytotoxic edema (Fig 
13) (52,53). In some studies, investigators have 
found a correlation between cytokine levels and 
an eventual need for shunting (54).

Metabolic Disorder–associated CLOCCs
Ammonia is likely the main culprit in hepatic 
encephalopathy (Fig 14) (55,56) and is associated 
at autopsy with cytotoxic changes in astrocytes 
and neurons (57). Acute toxic effects of ammonia 
cause a cytokine surge and increased glutamate 
with excessive activation of N-methyl-D-aspartate 
receptors (56,58–60). An additional imaging find-

ing that may be suggestive of hepatic encephalop-
athy is high signal intensity in the globus pallidus 
on T1-weighted MR images (61).

Extrapontine myelinolysis may involve the 
splenium, basal ganglia, thalamus, or middle 
cerebellar peduncles (Fig 15) and is often associ-
ated with central pontine myelinolysis (Fig 16) 
(45,62–64). Diffusion-weighted MR imaging can 
be used to detect the lesions in the early phase as 
hyperintense lesions with decreased ADC, find-
ings that represent cytotoxic edema.

The causes of extrapontine myelinolysis and 
central pontine myelinolysis seem to be multifac-
torial. Underlying conditions such as liver trans-
plantation, alcohol abuse, malnutrition, AIDS, 
and hyponatremia increase the susceptibility to 
osmotic stress (Fig 17). Massive accumulations of 
microglia expressing proinflammatory cytokines 
(TNF-D, interferon-J) have been observed in 
areas of osmotic demyelination (65).

Marchiafava-Bignami disease is a related 
condition in which abnormalities of the corpus 
callosum develop in patients with alcoholism and 
malnutrition. The callosal lesions have a predilec-
tion for the body of the corpus callosum but may 
occur in the splenium. They are often reversible 
with treatment (66).

Trauma-associated CLOCCs
Diffuse axonal injury is often associated with 
focal round or oval lesions in the corpus callo-
sum (Fig 18) (14,27,67). These lesions are often 
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&IGURE���� Infection-associated CLOCC in a 19-year-old woman presenting with headache, fever, and influenza-like symp-
toms after travel to Mozambique, in whom cerebral malaria was diagnosed. (a) Axial diffusion-weighted MR image shows a 
splenial lesion extending into the posterior deep white matter laterally. Diffuse microhemorrhages were seen in the subcorti-
cal white matter on susceptibility-weighted MR images (not shown). (b) Photograph of a cross-section of the gross speci-
men shows diffuse petechial hemorrhages. (c) High-power photomicrograph shows ring hemorrhages (arrows). (H-E stain; 
original magnification, 3100.) (d) High-power photomicrograph shows “Dürck granulomas” (arrow; areas of rarefied brain 
with activated microglia) and malarial deposits in red blood cells. (H-E stain; original magnification, 3400.) (Reprinted, with 
permission, from reference 45.)

Figure 10. Infection-associated CLOCC 
in a 5-year-old boy presenting with diar-
rhea and altered mental status, in whom 
rotavirus gastroenteritis was diagnosed. 
Axial diffusion-weighted MR image shows 
a splenial lesion extending into the poste-
rior deep white matter laterally; the lesion 
extended into the body of the corpus cal-
losum and the genu (better demonstrated 
on other images; not shown). The lesion 
had mostly resolved by day 4.
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Figure 11. Infection-associated CLOCC in a 13-year-old boy presenting with altered mental status, hepatosplenomegaly, and hy-
percytokinemia, in whom EBV infection was diagnosed and treated with cyclosporine. (a) Axial FLAIR MR image shows a hyperintense 
oblong splenial lesion and mild involvement of the anterior corpus callosum. Occipital hyperintensity is also depicted, which is typical 
with cyclosporine therapy but atypical for CLOCCs. (b) Axial diffusion-weighted MR image shows reduced diffusion in the callosal 
lesions but not the occipital lesions. (c) High-power photomicrograph shows infiltration with hemophagocytic histiocytes (arrow) 
and atypical lymphocytes, findings consistent with EBV-associated hemophagocytic lymphohistiocytosis. The patient died despite 
treatment. (H-E stain; original magnification, !400.) (Reprinted, with permission, from reference 76.)

located in the splenium but can involve the body 
of the corpus callosum or the genu (Fig 19). The 
callosal lesions may be symmetric or asymmetric, 
may be single or multiple, and may be associated 
with lesions of the fornices, internal capsules, 
superior cerebellar peduncles, midbrain, and 
white matter. Callosal lesions with symmetric 
involvement are often partially or fully reversible 
(14,27,67). In patients with diffuse axonal injury, 
reduced diffusion is present in the acute phase, 
representing cytotoxic edema. Dual mechanisms 
are presumed, primarily (a) leakage of glutamate 
caused by axonal disruption and (b) secondary 
release of cytokines and glutamate, which pro-
duce swelling in the surrounding myelin sheaths 
and astrocytes (5,14,67).

Figure 12. Infection-associated CLOCC in a 6-year-
old girl presenting with fever, hepatic dysfunction, 
and histiocytosis with hemophagocytosis, who re-
ceived a diagnosis of EBV-associated hemophago-
cytic lymphohistiocytosis. Axial diffusion-weighted 
MR image shows an abnormality involving the 
whole corpus callosum and extending into the 
hemispheric white matter. The patient died despite 
treatment with immunosuppressant therapy and 
plasma exchange. (Reprinted under a CC BY-NC-ND 
license from reference 77.)

Additional findings in patients with diffuse 
axonal injury include punctate lesions at the gray 
matter–white matter junction, within the corpus 
callosum, or within the brainstem (68). Lesions 
are often hyperintense on FLAIR MR images, 
with reduced diffusion on diffusion-weighted 
MR images. Use of susceptibility-weighted pulse 
sequences may demonstrate microhemorrhages. 
Clinically, patients usually have loss of conscious-
ness at the time of injury, with prolonged coma, 
altered mental status, or seizures. The prognosis 
is generally poor.

CLOCC Associations with Other Entities
CLOCCs have been associated with many other 
entities. In patients with acute high-altitude 
sickness (high-altitude cerebral edema), a his-
tory of a recent climb will be obvious. It should 
be noted that lesions have been described with-
out reduced ADC (69); this finding is likely due 
to the timing of imaging, because ADC reduc-
tion in the splenium tends to occur in the acute 
stages of altitude sickness (31,70). CLOCCs 
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have been described in association with hy-
pertension in patients with preeclampsia or 
eclampsia and patients with posterior reversible 
encephalopathy syndrome (71). As mentioned 
previously, seizures or status epilepticus can be 
associated with CLOCCs, even in patients who 
are not receiving therapy. Finally, numerous im-
mune-related entities have been associated with 
CLOCCs, including anti–glutamate receptor 
antibodies (17), anti–voltage-gated potassium 
channel antibodies (72), hemolytic uremic syn-
drome (73), vaccination (25), Kawasaki disease 
(74), and postpartum cerebral angiopathy (75).

Differentiation from  
Primary Callosal Lesions 

Occlusion of the distal branches of the anterior 
cerebral artery may result in ischemic infarction 
of the corpus callosum (27). Acute disseminated 
encephalomyelitis can also involve the corpus 

callosum. Lesions in either of these conditions 
tend to be asymmetric. In addition, infarctions 
in the anterior cerebral artery territory tend to 
occur after surgery, such as after aneurysm clip-
ping. Patients with multiple sclerosis often have 
typical periventricular white matter lesions. Fi-
nally, entities such as lymphoma or glioblastoma 
may involve the same regions but display a more 
aggressive appearance. MR angiographic images 
or contrast-enhanced MR images may help dif-
ferentiate these lesions from CLOCCs when the 
imaging appearance is ambiguous.

Conclusion
CLOCCs are secondary lesions associated with 
drug therapy, malignancies, infections, SAH, 
metabolic disorders, trauma, and other entities. 
CLOCCs demonstrate reduced diffusion from 
cytotoxic edema. They are usually ovoid and 
located in the splenium but may be more exten-

Figure 13. SAH-associated 
CLOCCs in three different patients 
presenting with acute-onset head-
ache and altered mental status, in 
whom nontraumatic SAH without 
vasospasm was diagnosed. (a) Ax-
ial computed tomographic (CT) 
image of a 68-year-old man shows 
a representative initial CT image 
with a modified Fisher group 3 
hemorrhage. (b) Axial diffusion-
weighted MR image of the same 
man as in a shows a lesion in the 
posterior body to splenium of the 
corpus callosum. No cause for 
SAH was found. He required long-
term shunting for hydrocephalus.  
(c) Axial diffusion-weighted MR 
image of a 42-year-old man shows 
a lesion in the posterior body to 
splenium of the corpus callosum. 
No cause for SAH was found.  
(d) Axial diffusion-weighted MR 
image of a 53-year-old man shows 
a lesion in the splenium of the cor-
pus callosum. A dissecting verte-
bral artery aneurysm was found, 
and a coil was inserted. The pa-
tient required long-term shunting 
for hydrocephalus. He had mild 
atrophy in the area of the abnor-
mality at the 1-year follow-up (not 
shown).
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Figure 14. Metabolic disorder–associated CLOCC in a 56-year-old man with liver cirrhosis caused by "1-
antitrypsin deficiency, who presented with new onset of confusion and in whom hepatic encephalopathy was 
diagnosed. (a) Axial diffusion-weighted MR image shows a lesion in the splenium extending into the deep 
white matter. The deep white matter also demonstrated mild, diffuse high T2 signal intensity without diffusion 
abnormality (not shown). (b) High-power photomicrograph of a specimen of the corpus callosum shows a lack 
of myelin with vacuolization. (Luxol fast blue stain; original magnification, 3200.)

sive, with involvement of the body of the corpus 
callosum and the genu. CLOCCs are frequently 
but not invariably reversible. When they are 
present, their underlying cause should be sought 
and addressed.
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